Brine/water heat pumps

Operating Manual

SW series

83056800bUK – Translation into English of the original German operating manual
Contents

1 About this operating manual ... 3
 1.1 Validity .. 3
 1.2 Reference documents .. 3
 1.3 Symbols and identification markings 3
 1.4 Contact .. 4

2 Safety ... 4
 2.1 Intended use .. 4
 2.2 Personnel qualifications .. 4
 2.3 Personal protective equipment .. 4
 2.4 Residual risks ... 4
 2.5 Disposal ... 5
 2.6 Avoid damage to property .. 5

3 Description .. 6
 3.1 Layout .. 6
 3.2 Accessories ... 7
 3.3 Function ... 7

4 Operation and care ... 8
 4.1 Energy and environmentally aware operation 8
 4.2 Maintenance .. 8

5 Delivery, storage, transport and installation 8
 5.1 Scope of supply .. 8
 5.2 Storage ... 8
 5.3 Unpacking and transport .. 9
 5.4 Installation ... 10

6 Installation and connection .. 10
 6.1 Dismantle the module box .. 10
 6.2 Install the module box .. 13
 6.3 Install the hydraulic connections 14
 6.4 Connect the electrical cables ... 14
 6.5 Installing the control ... 15

7 Flushing, filling and venting .. 17
 7.1 Remove the front panel of the module box 17
 7.2 Heating water quality ... 17
 7.3 Fill, flush and vent heat source 17
 7.4 Vent the circulation pump of the heat source 18
 7.5 Flush and fill the heating and domestic hot water charging circuit ... 18

8 Insulate hydraulic connections ... 18

9 Commissioning ... 19

10 Maintenance .. 19
 10.1 Basic principles .. 19
 10.2 Maintenance as required .. 19
 10.3 Yearly maintenance .. 19
 10.4 Clean and flush the evaporator und condenser 19

11 Faults .. 20

12 Dismantling and Disposal ... 20
 12.1 Dismantling ... 20
 12.2 Disposal and Recycling .. 20

Performance curves .. 26
Dimensioned drawings ... 34
Installation plans ... 36
Hydraulic integration, unit variant H (heating) 39
Terminal diagram ... 42
Circuit diagram 1/3 ... 43
EC Declaration of Conformity .. 52
1 About this operating manual

This operating manual is part of the unit.

► Before working on or with the unit read the operating manual carefully and follow it for all activities at all times, especially the warnings and safety instructions.

► Keep the operating manual to hand at the unit and hand over to the new owner if the unit changes hands.

► If you have any questions or anything is unclear, ask the local partner of the manufacturer or the factory's customer service.

► Note and follow all reference documents.

1.1 Validity

This operating manual refers solely to the unit identified by the nameplate and unit sticker (→ “Rating plate” on page 6 and “Unit sticker” on page 3).

1.2 Reference documents

The following documents contain additional information to this operating manual:

- Planning & design manual, hydraulic integration
- Operating manual of the heating and heat pump controller
- Brief description of the heat pump controller
- Operating manual of the expansion board (accessories)
- Logbook, if included with this unit by the manufacturer

Unit sticker

The unit sticker contains important information for contact with the manufacturer or the local partner of the manufacturer.

► Stick on the unit sticker (barcode with serial and product number) here.

1.3 Symbols and identification markings

Identification of warnings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Safety-relevant information. Warning of physical injuries.</td>
</tr>
<tr>
<td>DANGER</td>
<td>Indicates imminent danger resulting in serious injuries or death.</td>
</tr>
<tr>
<td>WARNING</td>
<td>Indicates a potentially dangerous situation, which can result in serious injuries or death.</td>
</tr>
<tr>
<td>CAUTION</td>
<td>Indicates a potentially dangerous situation, which can result in moderate or minor injuries.</td>
</tr>
<tr>
<td>ATTENTION</td>
<td>Indicates a potentially dangerous situation, which can result in property damage.</td>
</tr>
</tbody>
</table>

Symbols in the document

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>![]</td>
<td>Information for the professional</td>
</tr>
<tr>
<td>![]</td>
<td>Information for the owner/operator</td>
</tr>
<tr>
<td>✔</td>
<td>Requirement for an action</td>
</tr>
<tr>
<td>➤</td>
<td>Single step action prompt</td>
</tr>
<tr>
<td>1., 2., 3. ...</td>
<td>Numbered step within a multi-step action prompt. Keep to the given order.</td>
</tr>
<tr>
<td>![]</td>
<td>Additional information, e.g. note on easier work, information on standards</td>
</tr>
<tr>
<td>→</td>
<td>Reference to further information elsewhere in the operating manual or in another document</td>
</tr>
</tbody>
</table>
1.4 Contact
Addresses for purchasing accessories, for service cases or for answers to questions about the unit and this operating manual can be found on the internet at any time and is kept up-to-date:

- Germany: www.alpha-innotec.de
- EU: www.alpha-innotec.eu

2 Safety

Only use the unit if it is in proper technical condition and only use it as intended, safely and aware of the hazards, and follow this operating manual.

2.1 Intended use

The unit is solely intended for the following functions:

- Heating
- Domestic water heating (optional, with accessories)
- Cooling (optional, with accessories)

Proper use includes complying with the operating conditions (→ “Technical data/Scope of supply” on page 22) and the operating manual and noting and following the reference documents.

When using the local regulations note: laws, standards, guidelines, directives.

All other uses of the unit are not as intended.

2.2 Personnel qualifications

All instructional information in this operating manual is solely directed at qualified, skilled personnel.

Only qualified, skilled personnel is able to carry out the work on the unit safely and correctly. Interference by unqualified personnel can cause life-threatening injuries and damage to property.

Ensure that the personnel is familiar with the local regulations, especially those on safe and hazard-aware working.

Only allow qualified personnel with “electrical” training to carry out work on the electrics and electronics.

Only allow qualified, skilled personnel to do any other work on the system, e.g.

- Heating installer
- Plumbing installer
- Refrigeration system installer (maintenance work)

During the warranty and guarantee period, service work and repairs may only be carried out by personnel authorised by the manufacturer.

2.3 Personal protective equipment

There is a risk of cutting your hands on sharp edges of the unit.

- Wear cut-resistant protective gloves during transport.

2.4 Residual risks

Electric shock

Components in the unit are live with life-threatening voltage. Before opening the unit panelling:

- Disconnect unit from power supply.
- Protect unit against being switched back on again.

Injury due to flammable liquids and potentially explosive atmospheres

Constituents of antifreeze mixtures, e.g. ethanol, methanol, are highly flammable and form an explosive atmosphere:

- mix antifreeze in well-ventilated rooms.
- Note the hazardous substance markings and comply with the relevant safety regulations.
Injuries and environmental damage due to refrigerant

The unit contains harmful and environmentally dangerous refrigerant. If refrigerant leaks from the unit:

1. Switch off unit.
2. Thoroughly ventilate installation room.
3. Notify authorised customer service.

2.5 Disposal

Batteries

Improper disposal of the buffer battery damages the environment.

▲ Dispose of the buffer battery in an environmentally compatible way according to the local regulations.

Media harmful to the environment

Improper disposal of environmentally harmful media (antifreeze, refrigerant) damages the environment:

▲ Collect media safely.
▲ Dispose of the media in an environmentally compatible way according to the local regulations.

2.6 Avoid damage to property

Improper action

Requirements for minimum scale and corrosion damage in hot water heating systems:

● Proper planning, design and start-up
● Closed system with regard to corrosion
● Integration of adequately dimensioned pressure retention
● Use of deionised heating water (VE water)
● Regular servicing and maintenance

If a system is not planned, designed, started up and operated according to the given requirements, there is a risk that the following damage and faults will occur:

● Malfunctions and the failure of components, e.g. pumps, valves
● Internal and external leaks, e.g. from heat exchangers
● Cross-section reduction and blockages in components, e.g. heat exchanger, pipes, pumps
● Material fatigue
● Gas bubbles and gas cushion formation (cavitation)
● Negative effect on heat transfer, e.g. formation of coatings, deposits, and associated noises, e.g. boiling noises, flow noises

▲ Note and follow the information in this operating manual for all work on and with the unit.

Unsuitable quality of the fill and make-up water in the heating circuit

The efficiency of the system and the life of the heat generator and the heating components depend decisively on the quality of the heating water.

If the system is filled with untreated domestic water, calcium precipitates as scale. Limescale deposits form on the heat transfer surfaces of the heating. The efficiency drops and energy costs rise. In extreme cases the heat exchangers are damaged.

▲ Fill system with deionised heating water (VE water) only.

Unsuitable quality of the water or the water-antifreeze mixture in the heat source

▲ For operation of the heat source with water or water-antifreeze mixture, ensure that the water fulfils the quality specifications of the heating water side.

Using groundwater

▲ If using groundwater install an intermediate exchanger.
3 Description

3.1 Layout

NOTE
This section essentially names the components relevant for fulfilling the tasks described in this operating manual.

Housing with unit components

The module box is inserted in the bottom of the housing. The electrical control box is at the top.

Rating plate
Rating plates are attached to the following places on the unit:
- at the rear on the outer panel
- left-hand side, on the module box

The rating plate contains the following information at the top:
- Unit type, product number
- Serial number, unit index

The rating plate also contains an overview of the most important technical data.

Module box

1 Compressor
2 Condenser
3 Vibration isolator (4x)
4 Lifting lug (4x)
5 Evaporator
6 Heat source circulation pump
7 Heat source filling and drain tap
8 Heating filling and drain tap
3.2 Accessories

The following accessories are available for the unit through the manufacturer's local partner:

- Additional masking plate for the front cover panel, if the control is mounted on the wall
- Domestic hot water tank
- Changeover valve, domestic hot water
- Room thermostat for switching the cooling function (if included)
- Dew point monitor for protecting a system with cooling function at low flow temperatures (if available)
- Expansion board for automatic changeover between heating and cooling mode (if available)
- “Cooling package” for use of the cooling function
- for units without cooling: Pump assemblies for separate storage tank and in-line tank integration (heating circuit)
- Heating circuit safety package
- Heat source circuit safety package

3.3 Function

Liquid refrigerant is evaporated (evaporator), the energy for this process is environmental heat and comes from the “ground” heat source (collector, borehole heat exchanger or groundwater via intermediate exchanger). The gaseous refrigerant is compressed (compressor), this causes the pressure to rise and therefore the temperature too. The gaseous refrigerant with high temperature is liquefied (condenser).

Here the high temperature is discharged to the heating water and is used in the heating circuit. The liquid refrigerant with high pressure and high temperature is expanded (expansion valve). The pressure and temperature drop and the process begins again.

The heated heating water can be used for the domestic hot water charging or for the building heating. The temperatures required and use are controlled by the heat pump controller.

The integrated vibration isolators for the heating circuit and heat source prevent structure-borne sound and vibrations from being transferred onto the fixed pipes and therefore into the building.
 Cooling
Units can be retrofitted with the “Cooling package” accessories. The following options are possible for units with cooling function (→ operating manual of the heating and heat pump controller):
- Passive cooling (without compressor)
- Control of the cooling function via the heating and heat pump controller
- Switching between heating and cooling mode; automatically with expansion board (accessories)

Network connection on the control
The control can be connected to a computer or network via a network cable. The heating and heat pump controller can then be controlled from the computer or from the network.

4 Operation and care

NOTE
The unit is operated via the control of the heating and heat pump controller (→ operating manual of the heating and heat pump controller).

4.1 Energy and environmentally aware operation
The generally accepted requirements for energy-aware and environmentally-aware operation of a heating system also apply to use of a brine/water heat pump. The most important measures include:
- No unnecessarily high flow temperature
- No unnecessarily high domestic hot water temperature (note and follow local regulations)
- Do not open windows with gap /tilt open (continuous ventilation), but instead open wide for a short time (purge ventilation).

4.2 Maintenance
Wipe down the outside of the unit only using a damp cloth or cloth with mild cleaning product (washing-up liquid, neutral cleaning product). Do not use any harsh, abrasive, acid or chlorine-based cleaning products.

5 Delivery, storage, transport and installation

ATTENTION
Damage to the housing and the unit components due to heavy objects.
- Do not place any objects on the unit which are heavier than 30 kg.

5.1 Scope of supply

NOTE
On delivery the accessories are enclosed in two packages on the housing.
- Check delivery immediately after receipt for outwardly visible damage and completeness.
- Notify supplier of any defects immediately.
The separate pack included contains:
- Sticker with the unit number for attaching to page 3 of this manual
- Control unit, consisting of the control, wall bracket and masking plate
- 6-mm anchors with screws (2x each) for wall-mounting the control unit
- Outdoor sensor
- Replacement material after dismantling the module box:
 - Insulation hoses (2x)
 - Cable ties (4x)
 - for units up to 12 kW capacity: O-rings (6x), flat seal (1x)
 - for units with 14 kW capacity and higher: O-rings (8x)

5.2 Storage
- Where possible do not unpack the unit until directly before installation.
- Store unit protected against:
 - Moisture/damp
 - Frost
 - Dust and dirt
5.3 Unpacking and transport

Notes on safe transport

The housing with the unit components and the module box are heavy (⇒ “Technical data/Scope of supply” on page 22). There is a risk of injuries or damage to property if the housing with the unit components falls or overturns or if the module box falls.

► The housing with the unit components and module box must be transported and installed by several persons.

► Secure the housing with the unit components during transport. Carry the module box by the carrying lugs.

There is a risk of cutting your hands on sharp edges of the unit.

► Wear cut resistant protective gloves.

The hydraulic connections are not designed for mechanical loads.

► Do not lift or transport the unit by the hydraulic connections.

If the module box is tilted by more than 45°, compressor oil runs into the cooling circuit.

► Do not tilt the unit with installed module box by more than 45°.

Transport the unit preferably with a pallet truck, alternatively with a handcart.

Transport with a pallet truck

► Transport the unit to the place of installation packaged and secured on a wooden pallet.

Unpacking

NOTE

If the unit is not transported by a pallet truck:

Do not lift off the pallet until after unpacking and dismantling the housing panels.

1. Remove plastic films. Ensure that you do not damage the unit.

2. Dispose of the mounting bracket, transport and packaging material in an environmentally friendly way according to local regulations.

3. Remove the film from the plastic element of the front panel in the place of installation.

Dismantle housing panels for transport with handcart or carrying the unit

✔ Unit is unpacked (⇒ “Unpacking” on page 9).

1. To avoid damage to the housing panels:
 - Undo 2 screws at the bottom of the front panel.
 - Lift up the front panel and put down in safe place.
 - Undo the 2 screws at the front of the cover.
 - Lift the cover slightly, push back by approx. 1 cm and remove.
 - Undo 2 screws in each side panel.
 - Lift up each of the side panels to the side and put down in safe place.

Transport with a handcart

NOTE

● If transporting with a handcart the module box must be pushed in.

● This figure with the handcart shows transporting the unit on its left-hand side; it can also be transported on its right-hand side.

✔ Housing panels are dismantled.
1. To avoid damage: On a handcart, load the unit on its side only.

2. Transport unit on the handcart.

Carrying the unit

✓ Housing panels are dismantled.

1. Dismantle module box and carry it by the support lugs to the place of installation.

2. Carry the housing with the unit components separately to the place of installation.

5.4 Installation

Installation room and space requirements

NOTE

Note and follow the local regulations and standards regarding the installation room and space requirements. The table shows the regulations as per EN 378-1 relevant in Germany.

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Limit value [kg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 134a</td>
<td>0.25</td>
</tr>
<tr>
<td>R 404A</td>
<td>0.48</td>
</tr>
<tr>
<td>R 407C</td>
<td>0.31</td>
</tr>
<tr>
<td>R 410A</td>
<td>0.44</td>
</tr>
</tbody>
</table>

(→ “Technical data/Scope of supply” on page 22).

Minimum room volume = \[
\frac{\text{Refrigerant capacity [kg]}}{\text{Limit value [kg/m}^3]}\]

NOTE

If several heat pumps of the same type are installed only one heat pump need to be taken into account. If several heat pumps of different types are installed, only the heat pump with the largest refrigerant volume needs to be taken into account.

✓ Minimum volume corresponds to the requirements for the refrigerant used.

✓ Installation inside the building only.

✓ Installation room is dry and frost-free.

✓ Clearance dimensions are met (→ “Installation plans” on page 36).

✓ The surface/floor is suitable for installation of the unit:
 – level and horizontal
 – load-bearing capacity for the unit's weight

Aligning the unit

► Align the unit horizontally and stably in the installation site using the height-adjustable feet and a spanner size SW 13. Adjustment range: 25 mm.

6 Installation and connection

6.1 Dismantle the module box

ATTENTION

If the module box is tilted by more than 45°, compressor oil runs into the cooling circuit.

► Do not tilt the module box by more than 45°.
NOTE

- If necessary the module box can be dismantled for easier transport of the unit or for service reasons.
- Steps 1 to 5 are only required if the module box is connected and filled.

✓ Unit is safely disconnected from the power supply and protected against being switched back on again.

1. Remove the front panel of the module box (→ “7.1 Remove the front panel of the module box” on page 17).
2. Close shut-off valves to the heating circuit.
3. Drain the unit via the filling and drain tap of the heating.
4. Close shut-off valves to the heat source.
5. Drain the unit via the filling and drain tap of the heat source.

6. Disconnect the electrical connections:
 - **Unit up to 12 kW capacity:**
 - Disconnect 2 white connectors (1) at the electrical control cabinet. To do this, release the lugs by pressing on the sides of the connectors.
 - Pull out the black rectangular connector (2) at the top of the module box.
 - **Unit with 14 kW capacity and higher:**
 - Disconnect connector (1) at the front of the electrical control cabinet.
 - Disconnect connector (2) at the bottom of the electrical control cabinet. To do this, remove the control cabinet cover and undo the connector from the inside.
 - Pull out the black rectangular connector (3) at the top of the module box.
NOTE
The following diagrams show the connections of units with up to 12 kW capacity. In units with 14 kW capacity and higher all connections are installed with clips and without valves.

7. Remove the insulation on the hydraulic connections.

8. Remove 3 clips on the hydraulic connections.

9. Use spanner size SW 37 to unscrew the heating flow.

10. Disconnect the hydraulic connections; to do this, push the pipes apart as far as necessary.

11. Remove the 2 side retaining screws.
12. To protect the floor and move the module box (3) more easily: place boards (4) under it, e.g. from the packaging material.

13. Lift and hold nut (1) on the heating flow.

14. Slowly and carefully pull out the module box by the carrying lugs (2). Ensure that none of the pipes are damaged.

15. Pull out the module box completely and place it on the boards.

6.2 Install the module box

1. Place the module box carefully in the bottom of the housing and slowly and carefully push it in.
 - At the same time, lift and hold the nut on the heating flow.
 - Lift up pipes so that they do not get damaged.

2. Attach the two side retaining screws.

3. Connect the heating flow and hydraulic connections. At the same time, replace O-rings on the heat pump connections (→ separate pack included).

4. Perform pressure test and insulate pipes with the enclosed insulation hoses (→ separate pack).

5. Connect the electrical cables:
 - Plug both connectors into the electrical control cabinet. Ensure that the connectors move easily and the lugs latch into position.
 - Plug in the black rectangular connector at the top of the module box.
6.3 Install the hydraulic connections

ATTENTION
Damage to the copper pipes due to unacceptable loading!

► Secure all connections against twisting.

✓ The heat source system has been installed in accordance with the specifications (➔ planning & design manual, dimensioned diagrams, installation plans).
✓ Cross-sections and lengths of the pipes for the heating circuit and heat source are dimensioned adequately.
✓ The free pressure of the circulation pumps produces at least the minimum throughput required for the unit type (➔ “Technical data/Scope of supply” on page 22).
✓ The cables for the heat source and the heating are fixed to the wall or ceiling via a fixed point.

Connect the unit to the heat source and heating circuit

1. Install shut-off devices at the connections of the heat source and heating circuit.
2. Insert the vent at the highest point of the heat source and the heating circuit.
3. Recommendation: Fit a dirt filter with mesh size 0.9 mm onto the heat source inlet.
4. Ensure that the operating overpressures (➔ “Technical data/Scope of supply” on page 22) are not exceeded.

6.4 Connect the electrical cables

ATTENTION
Irreparable damage to the compressor due to wrong rotating field!

► Ensure that there is a clockwise rotating field for the compressor load infeed.

Basic information on the electrical connection

NOTE
Ensure that the unit is supplied with electricity at all times. After working inside the unit and attaching the unit panelling, switch the power supply back on immediately.

- The specifications of the local power supply company may apply to electrical connections.
- Fit the power supply for the heat pump with an all-pole miniature circuit-breaker with at least 3 mm contact spacing (IEC 60947-2).
- Note the level of the tripping current (➔ “Technical data/Scope of supply” on page 22).
- Comply with the electromagnetic compatibility regulations (EMC regulations).
 - Lay the control/sensor cables and unit supply cable sufficiently far apart (> 100 mm).
 - Lay unshielded power supply cables and shielded cables (LIN bus cable) with sufficient distance between them.
- Do not lengthen the patch cable and LIN bus cable. LIN bus cables up to 30 m long can be used if the quality of the cable is the same as that of the original cable.

Pull in the cables and conductors and make the connections

1. Strip the sheathing of all cables to the external loads before laying in the cable duct of the control box.
2. Dismantle the cover of the electrical control box.
3. Feed the control/sensor cables and unit supply cable into the housing from the rear.

4. Route cables from underneath through the cable openings in the control box.

5. Connect cables to the respective terminals (⇒ “Terminal diagram” on page 42).

Control the controller via a PC
1. During installation lay a shielded network cable (category 6) through the unit.
2. Plug the RJ-45 connector of the network cable into the socket of the control unit (1).

NOTE
The network cable can be retrofitted at any time.

6.5 Installing the control

NOTE
The control can be inserted in a recess in the front panel of the unit or can be installed on the wall.

Insert the control in the unit and connect
1. If required: Remove masking plate from the slot. To do this, dismantle the front panel (⇒ “Dismantle housing panels for transport with handcart or carrying the unit” on page 9), press the lugs together and push out of the openings.
2. Remove film from the plastic element of the front panel.
3. Position the control in the recess in the front unit panel.

4. Cut the cable to length generously so that the front panel can be removed and placed to the side of the unit. Do not cut the cable ties for strain relief of the LIN bus cable at the electric control box.
 - LIN bus cable approx. 1.1 m from the fixing of the strain relief at the electrical control box
 - All other cables approx. 1.2 m
5. Use cable ties (→separate pack) to fix the LIN bus cable to a web of the masking plate around 20 cm in front of the connector (strain relief).

6. Push the cable through the opening in the front panel of the unit from below and into the control.

7. Press the lugs of the control into the openings in the front panel of the unit.

Mount the control on the wall and connect
1. Release the rear bracket from the control.
2. If visually unattractive: Cut off the lugs on the rear of the control (are only needed to insert in the front panel).
4. If cables are fed in from underneath: Break out the web at the bottom in the middle of the wall bracket. Use side-cutters if necessary.
5. Fix the wall-mounted bracket (2) with 2 wall plugs (1) and 2 screws (3).

6. Feed in the cables from the wall (e.g. in-wall box) or from below.
7. Route the LIN bus cable from the top right-hand side at the rear from the heat pump and plug into the control at the bottom.
8. Push the control onto the wall-mounted bracket.
9. Put on the masking plate if applicable (accessories).
7 Flushing, filling and venting

7.1 Remove the front panel of the module box
► Unscrew the front panel of the module box.

7.2 Heating water quality

► Fill the system with deionised heating water (VE water) only (low-salt operation of the system).

 Advantages of low-salt operation:
• Low corrosion-promoting properties
• No formation of mineral scale
• Ideal for closed heating circuits
• Ideal pH value due to self-alkalinisation after filling the system
• If necessary, simple alkalinisation to pH value 8.2 by adding chemicals

7.3 Fill, flush and vent heat source

Water and the following antifreeze products are approved for filling the brine circuit:
• Monopropylene glycol
• Monoethylene glycol
• Ethanol
• Methanol
► For operation of the heat source with water or water-antifreeze mixture, ensure that the water fulfills the quality specifications of the heating water side.
► Check that frost protection to –13 °C is ensured.
► Ensure that the antifreeze is compatible with the pipe, seal and other component materials used on site.

✓ Drain pipe of the safety valve is connected.
✓ Room is ventilated.
1. Mix antifreeze with water thoroughly with the required ratio, before adding to the heat source.
2. Check the concentration of the water-antifreeze mixture. Frost protection: -13 °C
3. Fill the heat source with the water-antifreeze mixture.
4. Flush heat source system.
5. Flush until the system is air-free.
6. Fill the unit via the ball valves in the module box.
7.4 Vent the circulation pump of the heat source

1. Place vessel for collecting discharging liquid under the outlet.
2. Undo screw-on cap in the middle of the circulation pump.
3. Wait until liquid is discharged uniformly.
4. Screw the cap back on tightly.
5. Unscrew the front panel of the module box.
6. Dispose of collected liquid according to the local regulations.
7. Set system pressure to 1 bar.

7.5 Flush and fill the heating and domestic hot water charging circuit

✓ Drain pipe of the safety valve is connected.
✓ The front panel of the module box is unscrewed.
► Ensure that the set pressure of the safety valve is not exceeded.
1. If installed: Flush the domestic hot water charging circuit for approx. 1 minute.
2. Flush heating circuit thoroughly, until no more air is discharged.
3. Unscrew the front panel of the module box.

8 Insulate hydraulic connections

1. Insulate heating circuit and heat source according to the local regulations.
2. Open shut-off devices.
3. Perform a pressure test and check for leaks.
4. Insulate the internal piping of the module box with the insulation material from the separate pack included.
5. Insulate external piping on site.
6. Insulate all connections, fittings and pipes.
7. Insulate heat source so that it is vapour-diffusion tight.
8. Insulate the heating circuit of units with cooling vapour-diffusion tight too.
9 Commissioning

- Relevant planning & design data of the system is documented in full.
- The competent energy supplier has been notified of operation of the heat pump system.
- System is air-free.
- Installation check using the general checklist has been completed successfully.

1. Ensure that the following points are fulfilled completely:
 - Right-hand (clockwise) rotating load infeed field is available at the compressor.
 - Housing with the unit components is installed and mounted according to this operating manual.
 - The electrical installation has been carried out properly according to this operating manual and local regulations.
 - The power supply for the heat pump is equipped with an all-pole miniature circuit-breaker with at least 3 mm contact spacing (IEC 60947-2).
 - The level of the tripping current is compliant.
 - The heating circuit and heat source are flushed and vented.
 - The frost protection of the heat source liquid is at −13 °C.
 - All shut-off devices of the heating circuit are open.
 - All shut-off devices of the heat source are open.
 - The pipe systems and components of the system are leaktight.

2. Fill out carefully and sign the completion report for heat pump systems.

3. In Germany and Austria: Send completion report for heat pump systems and general checklist to the manufacturer's factory customer service department. In other countries: Send completion report for heat pump systems and general checklist to the manufacturer's local partner.

4. Arrange for the heat pump system to be started up by customer service personnel authorised by the manufacturer; this is a chargeable service.

10 Maintenance

10.1 Basic principles

The cooling circuit of the heat pump requires no regular maintenance.

Local regulations – e.g. EU Regulation (EC) 842/2006 – among other things, require leak checks beforehand and/or for a logbook to be kept for certain heat pumps.

The hermetic tightness and refrigerant fill quantity are criteria for whether a logbook has to be kept and leak tests performed or not, and at what time intervals.

- Ensure compliance with local regulations with regard to the specific heat pump system.

10.2 Maintenance as required

- Yearly, more frequently if necessary:
 - Checking and cleaning the components of the heating circuit and the heat source, e.g. valves, expansion vessels, circulation pumps, filters, dirt traps.
 - Test the function of the safety valve for the heating circuit.

10.3 Yearly maintenance

- Record the quality of the heating water analytically. In case of deviations from the specifications, take suitable measures without delay.

10.4 Clean and flush the evaporator und condenser

- Clean and flush the evaporator/condenser strictly according to the manufacturer's regulations.
- After flushing the evaporator/condenser with chemical cleaning product: neutralise any residues and flush the evaporator/condenser thoroughly with water.
11 Faults

► Read out the cause of the fault via the diagnostics program of the heating and heat pump controller.
► Contact the local partner of the manufacturer or the factory’s customer service. Have the fault message and unit number (☞ “Unit sticker” on page 3) to hand.

12 Dismantling and Disposal

12.1 Dismantling
✓ Unit is safely disconnected from the power supply and protected against being switched back on again.
► Collect all media safely.
► Separate components by their materials.

12.2 Disposal and Recycling
► Dispose of media harmful to the environment according to local regulations, e.g. antifreeze mixture, refrigerant.
► Recycle or ensure proper disposal of unit components and packaging materials according to local regulations.

Buffer (standby) battery
1. Use a screwdriver to push out the buffer battery on the processor board of the control

2. Dispose of the buffer battery according to local regulations.
Technical data/Scope of supply

SW 42H3 – SW 102H3

<table>
<thead>
<tr>
<th>Performance data: Heating output / COP</th>
<th>SW 42H3</th>
<th>SW 62H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>at 80/35 operating point to EN14511</td>
<td>kW : COP 4.70</td>
<td>6.11</td>
</tr>
<tr>
<td>Heating capacity / COP</td>
<td>kW : COP 4.70</td>
<td>4.68</td>
</tr>
<tr>
<td>at 80/35 operating point to EN14511</td>
<td>kW : COP 5.83</td>
<td>7.30</td>
</tr>
<tr>
<td>Cooling capacity at max. flow rate (B15/W25), units with passive cooling: Identifier K:</td>
<td>kW</td>
<td>—</td>
</tr>
<tr>
<td>Limits of use</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Heating circuit return min.</td>
<td>20 – 60</td>
<td>20 – 60</td>
</tr>
<tr>
<td>Heating circuit flow max.</td>
<td>5 – 25</td>
<td>5 – 25</td>
</tr>
<tr>
<td>Heat source return</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>additional operating points</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>80/6 W5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Sound</td>
<td>dB(A) 31</td>
<td>32</td>
</tr>
<tr>
<td>Sound pressure level at 1m distance from edge of unit</td>
<td>dB(A) 43</td>
<td>44</td>
</tr>
<tr>
<td>Sound power level to EN11202</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Heat source</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Flow rate: minimum</td>
<td>nominal analogous to 80/35</td>
<td>kW : COP 700</td>
</tr>
<tr>
<td>I / h</td>
<td>1050</td>
<td>1350</td>
</tr>
<tr>
<td>Maximum heat pump pressure Δp (with cooling ΔpK)***)</td>
<td>bar (bar) 0.75</td>
<td>0.6</td>
</tr>
<tr>
<td>Flow rate</td>
<td>—</td>
<td>1050</td>
</tr>
<tr>
<td>Approved anti-freeze</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Monopropylene glycol</td>
<td>Propylene glycol</td>
<td>Methanol</td>
</tr>
<tr>
<td>Anti-freeze concentration: Minimum frost protection down to</td>
<td>°C 22</td>
<td>5</td>
</tr>
<tr>
<td>max. allowable operating pressure</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Heating circuit</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Flow rate: minimum</td>
<td>nominal analogous to B0W35 (50Hz)</td>
<td>kW : COP 450</td>
</tr>
<tr>
<td>I / h</td>
<td>850</td>
<td>1000</td>
</tr>
<tr>
<td>Maximum heat pump pressure Δp (with cooling ΔpK)</td>
<td>bar (bar) 0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>Flow rate</td>
<td>—</td>
<td>1000</td>
</tr>
<tr>
<td>max. allowable operating pressure</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General unit data</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Total weight (with cooling)</td>
<td>kg (kg) 135</td>
<td>140</td>
</tr>
<tr>
<td>Box weight (with cooling)</td>
<td>kg (kg) 90</td>
<td>95</td>
</tr>
<tr>
<td>Tower weight (with cooling)</td>
<td>kg (kg) 1,05</td>
<td>1,42</td>
</tr>
<tr>
<td>Refrigerant type</td>
<td>Refrigerant capacity</td>
<td>R410A</td>
</tr>
<tr>
<td>Domestic hot water tank</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Net volume</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Impressed current anode</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Integrated: • yes — no</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Domestic hot water temperature, heating pump mode</td>
<td>Electric heating element</td>
<td>up to °C</td>
</tr>
<tr>
<td>Electric loss according to ErP: 2009/125/EE (at 40°C, draw-off of 10l/min)</td>
<td>32</td>
<td>44</td>
</tr>
<tr>
<td>Mixed water quantity according to ErP: 2009/125/EE (at 40°C, draw-off of 1l/min)</td>
<td>32</td>
<td>44</td>
</tr>
<tr>
<td>Refrigerant type</td>
<td>Refrigerant capacity</td>
<td>R410A</td>
</tr>
<tr>
<td>Domestic hot water tank</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Net volume</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Impressed current anode</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Integrated: • yes — no</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Domestic hot water temperature, heating pump mode</td>
<td>Electric heating element</td>
<td>up to °C</td>
</tr>
<tr>
<td>Electric loss according to ErP: 2009/125/EE (at 40°C, draw-off of 10l/min)</td>
<td>50</td>
<td>94</td>
</tr>
<tr>
<td>Mixed water quantity according to ErP: 2009/125/EE (at 40°C, draw-off of 1l/min)</td>
<td>50</td>
<td>94</td>
</tr>
<tr>
<td>Refrigerant type</td>
<td>Refrigerant capacity</td>
<td>R410A</td>
</tr>
<tr>
<td>Domestic hot water tank</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Net volume</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Impressed current anode</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Integrated: • yes — no</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Domestic hot water temperature, heating pump mode</td>
<td>Electric heating element</td>
<td>up to °C</td>
</tr>
<tr>
<td>Electric loss according to ErP: 2009/125/EE (at 40°C, draw-off of 10l/min)</td>
<td>50</td>
<td>94</td>
</tr>
<tr>
<td>Mixed water quantity according to ErP: 2009/125/EE (at 40°C, draw-off of 1l/min)</td>
<td>50</td>
<td>94</td>
</tr>
<tr>
<td>Refrigerant type</td>
<td>Refrigerant capacity</td>
<td>R410A</td>
</tr>
<tr>
<td>Domestic hot water tank</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Net volume</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Impressed current anode</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Integrated: • yes — no</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Domestic hot water temperature, heating pump mode</td>
<td>Electric heating element</td>
<td>up to °C</td>
</tr>
<tr>
<td>Electric loss according to ErP: 2009/125/EE (at 40°C, draw-off of 10l/min)</td>
<td>50</td>
<td>94</td>
</tr>
<tr>
<td>Mixed water quantity according to ErP: 2009/125/EE (at 40°C, draw-off of 1l/min)</td>
<td>50</td>
<td>94</td>
</tr>
<tr>
<td>Refrigerant type</td>
<td>Refrigerant capacity</td>
<td>R410A</td>
</tr>
<tr>
<td>Domestic hot water tank</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Net volume</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Impressed current anode</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Integrated: • yes — no</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Domestic hot water temperature, heating pump mode</td>
<td>Electric heating element</td>
<td>up to °C</td>
</tr>
<tr>
<td>Electric loss according to ErP: 2009/125/EE (at 40°C, draw-off of 10l/min)</td>
<td>50</td>
<td>94</td>
</tr>
<tr>
<td>Mixed water quantity according to ErP: 2009/125/EE (at 40°C, draw-off of 1l/min)</td>
<td>50</td>
<td>94</td>
</tr>
<tr>
<td>Refrigerant type</td>
<td>Refrigerant capacity</td>
<td>R410A</td>
</tr>
<tr>
<td>Domestic hot water tank</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Net volume</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Impressed current anode</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Integrated: • yes — no</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Domestic hot water temperature, heating pump mode</td>
<td>Electric heating element</td>
<td>up to °C</td>
</tr>
<tr>
<td>Electric loss according to ErP: 2009/125/EE (at 40°C, draw-off of 10l/min)</td>
<td>50</td>
<td>94</td>
</tr>
<tr>
<td>Mixed water quantity according to ErP: 2009/125/EE (at 40°C, draw-off of 1l/min)</td>
<td>50</td>
<td>94</td>
</tr>
<tr>
<td>Refrigerant type</td>
<td>Refrigerant capacity</td>
<td>R410A</td>
</tr>
</tbody>
</table>

Electrics

Voltage code	all-pole heat pump fusing	kW	—
Voltage code	Control voltage fusing	kW	—
Voltage code	Electric heating element fusing	kW	—
Voltage code	all-pole fusing for connection via a joint supply cable	kW	—
Voltage code	Electric heating element fusing	kW	—
Voltage code	all-pole fusing for connection via a joint supply cable	kW	—
Voltage code	Electric heating element fusing	kW	—
Voltage code	all-pole fusing for connection via a joint supply cable	kW	—
Voltage code	Electric heating element fusing	kW	—
Voltage code	all-pole fusing for connection via a joint supply cable	kW	—

Wp: effect. Power input at 80/35 to EN14511 I Current input I cosφ

kW	1,00	1,25
I	2,44	2,5
Δp	0,59	0,72

Wp: Max. machine current I Max. power input within the limits of use

| A | 4,8 | 5,0 |
| I | 2,3 | 2,5 |

Starting current: direct I with soft starter

| A | 22,0 | 23,0 |

Degree of protection

| IP | 20 | 20 |

Electric heating element output

| kW | — | — |

Circulation pump power consumption, heating circuit I heat source

| W | 1 – 5 – 87 | 1 – 5 – 87 |

Other unit information

Safety valve, heating circuit	Heat source	included in scope of supply: • yes — no
Expansion valve, heating circuit	Heat source	included in scope of supply: • yes — no
Overpressure valve, heating circuit	Heat source	included in scope of supply: • yes — no
Vibration dampers, heating circuit	Heat source	included in scope of supply: • yes — no

*) Only compressor, **) Follow local regulations, ***) Figures for 25% mono-ethylene glycol
Performance data: Heating output / COP

<table>
<thead>
<tr>
<th></th>
<th>SW 82H3</th>
<th>SW 102H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating capacity / COP at B0/W35 operating point to EN14511</td>
<td>kW</td>
<td>COP</td>
</tr>
<tr>
<td>Cooling capacity at max. flow rate (B15/W25), units with passive cooling: Identifier K:</td>
<td>kW</td>
<td></td>
</tr>
</tbody>
</table>

Limits of use

<table>
<thead>
<tr>
<th></th>
<th>SW 82H3</th>
<th>SW 102H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating circuit return min.</td>
<td>°C</td>
<td>20</td>
</tr>
<tr>
<td>Heat source return</td>
<td>°C</td>
<td>5 – 25</td>
</tr>
<tr>
<td>Additional operating points</td>
<td>B0W65</td>
<td>B0W65</td>
</tr>
</tbody>
</table>

Sound

<table>
<thead>
<tr>
<th></th>
<th>SW 82H3</th>
<th>SW 102H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound pressure level at 1m distance from edge of unit</td>
<td>dB(A)</td>
<td>31</td>
</tr>
<tr>
<td>Sound power level to EN12102</td>
<td>dB(A)</td>
<td>43</td>
</tr>
</tbody>
</table>

Heat source

<table>
<thead>
<tr>
<th></th>
<th>SW 82H3</th>
<th>SW 102H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate: minimum</td>
<td>l/h</td>
<td>1200</td>
</tr>
<tr>
<td>Nominal analogous to B0/W35</td>
<td></td>
<td>1750</td>
</tr>
<tr>
<td>Maximum</td>
<td>l/h</td>
<td>2600</td>
</tr>
<tr>
<td>Max. free heat pump pressure Δp (with cooling ΔpK)***)</td>
<td>bar (bar)</td>
<td>0.84 (-)</td>
</tr>
<tr>
<td>Max. free heat pump pressure Δp (with cooling ΔpK)***)</td>
<td>Flow rate</td>
<td>1.750</td>
</tr>
<tr>
<td>Approved anti-freeze</td>
<td>°C</td>
<td>•</td>
</tr>
<tr>
<td>Monoethylene glycol</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Methanol</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Ethanol</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Anti-freeze concentration: Minimum frost protection down to</td>
<td>°C</td>
<td>-13</td>
</tr>
<tr>
<td>Max. allowable operating pressure</td>
<td>bar</td>
<td>3</td>
</tr>
</tbody>
</table>

Heating circuit

<table>
<thead>
<tr>
<th></th>
<th>SW 82H3</th>
<th>SW 102H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow rate: minimum</td>
<td>l/h</td>
<td>650</td>
</tr>
<tr>
<td>Nominal analogous to B0/W35 (50Hz)</td>
<td></td>
<td>1300</td>
</tr>
<tr>
<td>Maximum</td>
<td>l/h</td>
<td>1600</td>
</tr>
<tr>
<td>Power losses, heat pump ΔpK***)</td>
<td>Volume flow</td>
<td>0.06 (-)</td>
</tr>
<tr>
<td>Max. allowable operating pressure</td>
<td>bar</td>
<td>3</td>
</tr>
</tbody>
</table>

General unit data

<table>
<thead>
<tr>
<th></th>
<th>SW 82H3</th>
<th>SW 102H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total weight (with cooling)</td>
<td>kg (kg)</td>
<td>155 (-)</td>
</tr>
<tr>
<td>Box weight (cooling)</td>
<td>kg (kg)</td>
<td>110 (-)</td>
</tr>
<tr>
<td>Tower weight (cooling)</td>
<td>kg (kg)</td>
<td>45 (-)</td>
</tr>
<tr>
<td>Refrigerant type</td>
<td>Refrigerant capacity</td>
<td>R410A</td>
</tr>
<tr>
<td>...</td>
<td>kg</td>
<td>R410A</td>
</tr>
</tbody>
</table>

Domestic hot water tank

<table>
<thead>
<tr>
<th></th>
<th>SW 82H3</th>
<th>SW 102H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net volume</td>
<td>l</td>
<td>—</td>
</tr>
<tr>
<td>Impressed current anode integrated</td>
<td>• yes — no</td>
<td>—</td>
</tr>
<tr>
<td>Domestic water temperature, heating pump mode</td>
<td>°C up to °C</td>
<td>up to °C</td>
</tr>
<tr>
<td>Mixed water quantity according to ErP: 2009/125/EC (at 40°C, draw-off of 10 l/min)</td>
<td>l/min</td>
<td>—</td>
</tr>
<tr>
<td>Standing loss according to ErP: 2009/125/EC (at 65°C)</td>
<td>l/min</td>
<td>—</td>
</tr>
</tbody>
</table>

Electrics

<table>
<thead>
<tr>
<th></th>
<th>SW 82H3</th>
<th>SW 102H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage code: one-pole heat pump fusing *) **</td>
<td>3* PE/400V/50Hz: C10</td>
<td></td>
</tr>
<tr>
<td>Voltage code: Control voltage fusing **</td>
<td>3* PE/400V/50Hz: C10</td>
<td></td>
</tr>
<tr>
<td>Voltage code: Electric heating element fusing **</td>
<td>3* PE/400V/50Hz: C10</td>
<td></td>
</tr>
<tr>
<td>Voltage code: one-pole fusing for connection via a joint supply cable **</td>
<td>3* PE/400V/50Hz: C10</td>
<td></td>
</tr>
<tr>
<td>WP**: Effect: Power input at B0/W35 to EN14511</td>
<td>kW</td>
<td>1.57</td>
</tr>
<tr>
<td>WP**: Max. machine current</td>
<td>A</td>
<td>3.02</td>
</tr>
<tr>
<td>WP**: Max. power input within the limits of use</td>
<td>kW</td>
<td>0.75</td>
</tr>
<tr>
<td>Starting current: direct</td>
<td>A</td>
<td>6.01</td>
</tr>
<tr>
<td>... with soft starter</td>
<td>kW</td>
<td>3.10</td>
</tr>
<tr>
<td>...</td>
<td>kW</td>
<td>30.0</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP</td>
<td>20</td>
</tr>
<tr>
<td>Electric heating element output</td>
<td>kW</td>
<td>—</td>
</tr>
<tr>
<td>Circulation pump power consumption, heating circuit I heat source</td>
<td>kW</td>
<td>—</td>
</tr>
<tr>
<td>...</td>
<td>kW</td>
<td>—</td>
</tr>
</tbody>
</table>

Other unit information

<table>
<thead>
<tr>
<th></th>
<th>SW 82H3</th>
<th>SW 102H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety valve, heating circuit I</td>
<td>Heat source included in scope of supply: • yes — no</td>
<td>—</td>
</tr>
<tr>
<td>Expansion valve, heating circuit I</td>
<td>Heat source included in scope of supply: • yes — no</td>
<td>—</td>
</tr>
<tr>
<td>Changeover valve, heating district heating</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Safety valve, heat source I</td>
<td>Heat source included in scope of supply: • yes — no</td>
<td>—</td>
</tr>
</tbody>
</table>

* Only compressor, ** Follow local regulations, ***) Figures for 25% mono-ethylene glycol

813475a | 813476a
Technical data

Scope of supply

<table>
<thead>
<tr>
<th>SW 122H3</th>
<th>SW 142H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance data</td>
<td>Heating output / COP</td>
</tr>
<tr>
<td></td>
<td>at B0/W35 operating point to EN14511</td>
</tr>
<tr>
<td></td>
<td>kW</td>
</tr>
<tr>
<td>SW 122H3</td>
<td>12.18</td>
</tr>
<tr>
<td>SW 142H3</td>
<td>13.50</td>
</tr>
</tbody>
</table>

| **Heating capacity / COP** |
| at B0/W35 operating point to EN14511 |
kW	COP	
SW 122H3	12.29	2.94
SW 142H3	12.29	2.94

| **Cooling capacity at max. flow rate (B15/W25), units with passive cooling: Identifier K:** |
| kW |
| SW 122H3 | — |
| SW 142H3 | — |

| **Limits of use** |
| **Heating circuit return min. / Heating circuit flow max.** |
°C	kW	
SW 122H3	20	60
SW 142H3	20	60

| **Heat source** |
Flow rate: minimum	nominal analogous to B0/W35	maximum	
l/h	kW	COP	
SW 122H3	1900	2800	4200
SW 142H3	2100	3150	4750

Max. free heat pump pressure Δp (with cooling ΔpK)*	l/h	kW	COP
SW 122H3	0.7	2800	0.74
SW 142H3	0.74	3150	0.74

| **Approved anti-freeze** |
| **Circulation pump power consumption, heating circuit** |
kW	COP	
SW 122H3	14.55	6.06
SW 142H3	16.07	6.31

| **Heating circuit** |
| **Max. allowable operating pressure** |
bar	kW	COP
SW 122H3	11.24	3.76
SW 142H3	11.76	2.94

| **Domestic hot water tank** |
| **Trinkwarmwasserbehälter** |
Volumenstrom: minimal	nominal analog B0/W35	
l/h	kW	COP
SW 122H3	0.19	3900
SW 142H3	0.19	3900

| **Electric heating element output** |
| kW |
| SW 122H3 | 11.24 | 14.55 |
| SW 142H3 | 11.76 | 16.07 |

| **Flow rate: minimum / nominal analogous to B0/W35 / maximum** |
l/h	kW	COP	
SW 122H3	0.7	2800	0.74
SW 142H3	0.74	3150	0.74

Max. free heat pump pressure Δp (with cooling ΔpK)	l/h	kW	COP
SW 122H3	0.7	2800	0.74
SW 142H3	0.74	3150	0.74

| **Cooling capacity at max. flow rate (B15/W25), units with passive cooling: Identifier K:** |
kW	COP
SW 122H3	—
SW 142H3	—

| **Heating capacity** |
kW	COP	
SW 122H3	16.07	6.31
SW 142H3	16.07	6.31

| **General unit data** |
| **Total weight (with cooling)** |
kg	kW	COP	
SW 122H3	165	5.00	5.00
SW 142H3	175	5.08	5.08

| **Box weight (with cooling)** |
kg	kW	COP	
SW 122H3	120	4.5	4.5
SW 142H3	130	5.0	5.0

| **Refrigerant type / Refrigerant capacity** |
kg	kW	COP	
SW 122H3	410A	2.25	2.25
SW 142H3	410A	2.38	2.38

| **Domestic hot water tank** |
| **Trinkwarmwasserbehälter** |
Volumenstrom: minimal	nominal analog B0/W35	
l/h	kW	COP
SW 122H3	0.19	3900
SW 142H3	0.19	3900

| **Electric** |
| **Degree of protection** |
IP	kW	COP	
SW 122H3	20	10.63	2.97
SW 142H3	20	10.62	2.98

| **Circulation pump power consumption, heating circuit** |
kW	COP	
SW 122H3	14.55	6.06
SW 142H3	16.07	6.31

| **Other unit information** |
| **Safety valve, heating circuit** |
| included in scope of supply: yes — no |
| SW 122H3 | yes |
| SW 142H3 | yes |

| **Expansion valve, heating circuit** |
| included in scope of supply: yes — no |
| SW 122H3 | yes |
| SW 142H3 | yes |

| **Vibration isolators, heating circuit** |
| included in scope of supply: yes — no |
| SW 122H3 | yes |
| SW 142H3 | yes |

*) Only compressor, **) Follow local regulations, ***) Figures for 25% mono-ethylene glycol
<table>
<thead>
<tr>
<th>Performance data: Heating output / COP</th>
<th>SW 172H3</th>
<th>SW 192H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>at B0/W35 operating point to EN14511</td>
<td>kW</td>
<td>COP</td>
</tr>
<tr>
<td>Heating capacity / COP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at B0/W35 operating point to EN14511</td>
<td>16.86</td>
<td>4.93</td>
</tr>
<tr>
<td>at B7/W35 flows analogous to B0/W35</td>
<td>kW</td>
<td>COP</td>
</tr>
<tr>
<td>Cooling capacity at max. flow rate (B15/W25), units with passive cooling: Identifier K:</td>
<td>kW</td>
<td></td>
</tr>
<tr>
<td>Limits of use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating circuit return min.</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Heating circuit flow max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat source return</td>
<td>5—25</td>
<td>5—25</td>
</tr>
<tr>
<td>additional operating points</td>
<td>...</td>
<td>B0W65</td>
</tr>
<tr>
<td>Sound</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound pressure level at 1m distance from edge of unit</td>
<td>dB(A)</td>
<td>34</td>
</tr>
<tr>
<td>Sound power level to EN12102</td>
<td></td>
<td>dB(A)</td>
</tr>
<tr>
<td>Heat source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow rate:</td>
<td></td>
<td>minimum</td>
</tr>
<tr>
<td>bar</td>
<td>l/h</td>
<td>bar</td>
</tr>
<tr>
<td>Max. free heat pump pressure Δp (with cooling ΔpK)</td>
<td>0.53</td>
<td>1</td>
</tr>
<tr>
<td>Approved anti-freeze</td>
<td>Monoethylene glycol</td>
<td>Propylene glycol</td>
</tr>
<tr>
<td>Anti-freeze concentration: Minimum frost protection down to</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>max. allowable operating pressure</td>
<td>bar</td>
<td>3</td>
</tr>
<tr>
<td>Heating circuit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow rate:</td>
<td></td>
<td>minimum</td>
</tr>
<tr>
<td>bar</td>
<td>l/h</td>
<td>bar</td>
</tr>
<tr>
<td>Refrigeant type</td>
<td>Refrigerant capacity</td>
<td></td>
</tr>
<tr>
<td>Domestic hot water tank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net volume</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Impressed current anode</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>Domestic hot water temperature, heating pump mode</td>
<td>Electric heating element</td>
<td>up to °C</td>
</tr>
<tr>
<td>Maximal zulässiger Betriebsdruck</td>
<td>bar</td>
<td>16.15</td>
</tr>
<tr>
<td>Domestic hot water tank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum pressure</td>
<td>bar</td>
<td>2,65</td>
</tr>
<tr>
<td>Electric drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage code: all-pole heat pump fusing ***)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage code: Control voltage fusing ***)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage code: Electric heating element fusing ***)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage code: all-pole fusing for connection via a joint supply cable ***)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP*: effect. Power input at B0/W35 to EN14511</td>
<td>kW</td>
<td>A</td>
</tr>
<tr>
<td>WP*: Max. machine current</td>
<td>A</td>
<td>kW</td>
</tr>
<tr>
<td>Starting current: direct</td>
<td>A</td>
<td>30,0</td>
</tr>
<tr>
<td>Electric heating element output</td>
<td>kW</td>
<td></td>
</tr>
<tr>
<td>Circulation pump power consumption, heating circuit</td>
<td>kW</td>
<td></td>
</tr>
<tr>
<td>Other unit information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance curves

SW 42H3

Heating water volume flow rate

![Graph showing heating water volume flow rate](image)

Key:
- \(Q_h\) (kW)
- \(V_{\text{HW}}\) (m³/h)
- \(V^*\) (m³/h)
- \(\text{Temp}_{\text{WQ}}\) (°C)
- \(Q_h\) (kW)
- \(P_e\) (kW)
- \(\text{COP}\)
- \(\Delta p_{\text{HW}} / \Delta p_{\text{HW/K}}\)
- \(\Delta p_{\text{WQ}} / \Delta p_{\text{WQ/K}}\)

Heat source volume flow rate

![Graph showing heat source volume flow rate](image)

Heat source temperature

![Graph showing heat source temperature](image)

Heating capacity

![Graph showing heating capacity](image)

Power consumption

![Graph showing power consumption](image)

Coefficient of performance

![Graph showing coefficient of performance](image)

Heating circuit free pressure

![Graph showing heating circuit free pressure](image)

Heating circuit with cooling free pressure

![Graph showing heating circuit with cooling free pressure](image)

Heat source free pressure

![Graph showing heat source free pressure](image)

Heat source with cooling free pressure

![Graph showing heat source with cooling free pressure](image)
SW 62H3

Performance curves

Qh (kW)

![Graph showing heating water volume flow rate vs. temperature.](image)

COP

![Graph showing coefficient of performance vs. temperature.](image)

Pe (kW)

![Graph showing power consumption vs. temperature.](image)

Δp_HW (bar)

![Graph showing heating circuit free pressure vs. volume flow rate.](image)

Δp_WQ (bar)

![Graph showing heat source free pressure vs. volume flow rate.](image)

Key:

- **DE823000L/170408**
- **V_HW** Heating water volume flow rate
- **V_R** Heat source volume flow rate
- **Temp_WQ** Heat source temperature
- **Qh** Heating capacity
- **Pe** Power consumption
- **COP** Coefficient of performance
- **Δp_HW / Δp_HW/K** Heating circuit free pressure / Heating circuit with cooling free pressure
- **Δp_WQ / Δp_WQ/K** Heat source free pressure / Heat source with cooling free pressure
Performance curves SW 82H3

Key:
- DE823000L/170408
- V_{HW}: Heating water volume flow rate
- V^*: Heat source volume flow rate
- Temp_{WQ}: Heat source temperature
- Q_h: Heating capacity
- P_e: Power consumption
- COP: Coefficient of performance
- $\Delta p_{\text{HW}} / \Delta p_{\text{HW}K}$: Heating circuit free pressure / Heating circuit with cooling free pressure
- $\Delta p_{\text{WQ}} / \Delta p_{\text{WQ}K}$: Heat source free pressure / Heat source with cooling free pressure
Performance curves

Qh (kW)

![Graph showing heating water volume flow rate vs. temperature](image)

- **Key:**
 - $V_{W/}$: Heating water volume flow rate
 - V^*: Heat source volume flow rate
 - Temp$_{W/Q}$: Heat source temperature
 - Qh: Heating capacity
 - Pe: Power consumption
 - COP: Coefficient of performance
 - $\Delta p_{W/K}$: Heating circuit free pressure / Heating circuit with cooling free pressure
 - $\Delta p_{W/Q}$: Heat source free pressure / Heat source with cooling free pressure

COP

![Graph showing COP vs. temperature](image)

Pe (kW)

![Graph showing power consumption vs. temperature](image)

$\Delta p_{W/Q}$ (bar)

![Graph showing $\Delta p_{W/Q}$ vs. volume flow](image)

$\Delta p_{W/Q}$ (bar)

![Graph showing $\Delta p_{W/Q}$ vs. volume flow](image)

Key:

DE82300L/170408

- $V_{W/}$: Heating water volume flow rate
- V^*: Heat source volume flow rate
- Temp$_{W/Q}$: Heat source temperature
- Qh: Heating capacity
- Pe: Power consumption
- COP: Coefficient of performance
- $\Delta p_{W/K}$: Heating circuit free pressure / Heating circuit with cooling free pressure
- $\Delta p_{W/Q}$: Heat source free pressure / Heat source with cooling free pressure
Performance curves

SW 122H3

Key:
- **DE823000L/170408**
- **V\textsubscript{HW}**: Heating water volume flow rate
- **V***: Heat source volume flow rate
- **Temp\textsubscript{WG}**: Heat source temperature
- **Qh**: Heating capacity
- **Pe**: Power consumption
- **COP**: Coefficient of performance
- **Δp\textsubscript{HW} / Δp\textsubscript{HW/K}**: Heating circuit free pressure / Heating circuit with cooling free pressure
- **Δp\textsubscript{WG} / Δp\textsubscript{WG/K}**: Heat source free pressure / Heat source with cooling free pressure

Qh (kW)

- Graph showing heating water volume flow rate (V\textsubscript{HW}) against Temp\textsubscript{WG} (°C).

COP

- Graph showing COP against Temp\textsubscript{WG} (°C).

Pe (kW)

- Graph showing power consumption (Pe) against Temp\textsubscript{WG} (°C).

Δp\textsubscript{HW} (bar)

- Graph showing Δp\textsubscript{HW} (bar) against V\textsubscript{HW} (m3/h).

Δp\textsubscript{WG} (bar)

- Graph showing Δp\textsubscript{WG} (bar) against V\textsubscript{WG} (m3/h).
SW 142H3

Performance curves

Qh (kW)

![Graph showing Qh (kW) vs Temp\(_{\text{WQ}}\) (°C)](image)

COP

![Graph showing COP vs Temp\(_{\text{WQ}}\) (°C)](image)

Pe (kW)

![Graph showing Pe (kW) vs Temp\(_{\text{WQ}}\) (°C)](image)

Δp\(_{\text{HH}}\) (bar)

![Graph showing Δp\(_{\text{HH}}\) vs V\(_{\text{WQ}}\) (m³/h)](image)

Δp\(_{\text{WW}}\) (bar)

![Graph showing Δp\(_{\text{WW}}\) vs V\(_{\text{WQ}}\) (m³/h)](image)

Key:
- **DE823000L/170408**
- **V\(_{\text{HW}}\)**: Heating water volume flow rate
- **V\(_{\text{H}}\)**: Heat source volume flow rate
- **Temp\(_{\text{WQ}}\)**: Heat source temperature
- **Qh**: Heating capacity
- **Pe**: Power consumption
- **COP**: Coefficient of performance
- **Δp\(_{\text{HH}}\) / Δp\(_{\text{HH/K}}\)**: Heating circuit free pressure / Heating circuit with cooling free pressure
- **Δp\(_{\text{WW}}\) / Δp\(_{\text{WW/K}}\)**: Heat source free pressure / Heat source with cooling free pressure
Performance curves

SW 172H3

Key:
- **DE823000L/170408**
- \(V_{\text{HW}} \): Heating water volume flow rate
- \(V^* \): Heat source volume flow rate
- **Temp\(_{\text{WQ}}\)**: Heat source temperature
- **Qh**: Heating capacity
- **Pe**: Power consumption
- **COP**: Coefficient of performance
- \(\Delta p_{\text{HW}} / \Delta p_{\text{HW/K}} \): Heating circuit free pressure / Heating circuit with cooling free pressure
- \(\Delta p_{\text{WQ}} / \Delta p_{\text{WQ/K}} \): Heat source free pressure / Heat source with cooling free pressure

Graphs:
- **Qh (kW)**
- **COP**
- **\(\Delta p_{\text{HW}} \) (bar)**
- **\(\Delta p_{\text{WQ}} \) (bar)**

823253
Key:
- **Key:** DE823000L/170408
- \(V_{\text{HW}} \) Heating water volume flow rate
- \(V^* \) Heat source volume flow rate
- \(\text{Temp}_{\text{WQ}} \) Heat source temperature
- \(Q_{\text{h}} \) Heating capacity
- \(P_e \) Power consumption
- \(\text{COP} \) Coefficient of performance
- \(\Delta p_{\text{HW}} \) Heating circuit free pressure
- \(\Delta p_{\text{WQ}} \) Heat source free pressure
- \(\Delta p_{\text{HW/K}} \) Heating circuit with cooling free pressure
- \(\Delta p_{\text{WQ/K}} \) Heat source with cooling free pressure
Dimensioned drawings

Key: D819447
All dimensions in mm.

A Front view
B Side view from left
C Plan view
A1 Front view of module box
C1 Top view of module box

<table>
<thead>
<tr>
<th>Item</th>
<th>Name</th>
<th>4kW -12kW</th>
<th>14kW - 19kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heating water outlet (flow)</td>
<td>Ø28</td>
<td>Ø35</td>
</tr>
<tr>
<td></td>
<td>Outside diameter</td>
<td>Outside diameter</td>
<td>Outside diameter</td>
</tr>
<tr>
<td>2</td>
<td>Heat source inlet (in heat pump)</td>
<td>Ø28</td>
<td>Ø35</td>
</tr>
<tr>
<td></td>
<td>Outside diameter</td>
<td>Outside diameter</td>
<td>Outside diameter</td>
</tr>
<tr>
<td>3</td>
<td>Cable entry, connection cable</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>Heat source outlet (from heat pump)</td>
<td>Ø28</td>
<td>Ø35</td>
</tr>
<tr>
<td></td>
<td>Outside diameter</td>
<td>Outside diameter</td>
<td>Outside diameter</td>
</tr>
<tr>
<td>5</td>
<td>Heating water inlet (return)</td>
<td>Ø28</td>
<td>Ø35</td>
</tr>
<tr>
<td></td>
<td>Outside diameter</td>
<td>Outside diameter</td>
<td>Outside diameter</td>
</tr>
<tr>
<td>6</td>
<td>Cable entry, LIN bus cable</td>
<td>----</td>
<td>---</td>
</tr>
</tbody>
</table>
Dimensioned drawing of control, wall-mounted bracket

Wall-mounted installation:
Installation plans

Key: DE819456a
V1 Version 1
FZ Free space for functionally necessary accessories
FS Free space for service purposes
OKF Finished floor level

All dimensions in mm
V2

Key: DE819456a
V2 Version 2
FZ Free space for functionally necessary accessories
FS Free space for service purposes
OKF Finished floor level
All dimensions in mm.
Installation plans

V3

Key: DE819456a
V3 Version 3
FS Free space for service purposes
OKF Finished floor level
All dimensions in mm.
Hydraulic integration, unit variant H (heating)
Hydraulic integration, separate buffer tank
Hydraulics key

<table>
<thead>
<tr>
<th>Hydraulics key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heat pump</td>
</tr>
<tr>
<td>2</td>
<td>Underfloor heating / radiators</td>
</tr>
<tr>
<td>3</td>
<td>Vibration radiator</td>
</tr>
<tr>
<td>4</td>
<td>Unit underlay, Styrometer strip</td>
</tr>
<tr>
<td>5</td>
<td>Shut-off valve with drain outlet</td>
</tr>
<tr>
<td>6</td>
<td>Expansion vessel included in scope of supply</td>
</tr>
<tr>
<td>7</td>
<td>Safety valve</td>
</tr>
<tr>
<td>8</td>
<td>Shut-off valve</td>
</tr>
<tr>
<td>9</td>
<td>Check valve</td>
</tr>
<tr>
<td>10</td>
<td>Individual room control</td>
</tr>
<tr>
<td>11</td>
<td>Heat pump outdoor unit, split, scope of supply</td>
</tr>
<tr>
<td>12</td>
<td>Temperature difference control (low temperature)</td>
</tr>
<tr>
<td>13</td>
<td>Motor valve</td>
</tr>
<tr>
<td>14</td>
<td>Domestic hot water charging circulation pump (BLP)</td>
</tr>
<tr>
<td>15</td>
<td>Circulation, circulation pump (LP)</td>
</tr>
<tr>
<td>16</td>
<td>Motor valve</td>
</tr>
<tr>
<td>17</td>
<td>Horizontal ground collector</td>
</tr>
<tr>
<td>18</td>
<td>Groundwater flow direction</td>
</tr>
<tr>
<td>19</td>
<td>Filter and drain valve</td>
</tr>
</tbody>
</table>

Important note!

These hydraulic diagrams are schematic representations and are designed to help you! They do not release you from the need to carry out your own planning & design! Shut-off devices, vent valves and safety measures are not drawn in full in these diagrams! The local country-specific standards, laws and regulations must be followed! The pipes must be dimensioned according to the nominal volume flow rate of the heat pump or the free pressure of the integrated circulation pump! For detailed information and advice please contact the sales partner responsible for your area!

Table for additional hydraulic components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA/A</td>
<td>Outdoor sensor</td>
</tr>
<tr>
<td>TBW/B</td>
<td>Domestic hot water sensor</td>
</tr>
<tr>
<td>TB1/C</td>
<td>Flow sensor, mixing circuit 1</td>
</tr>
<tr>
<td>TR/L/G</td>
<td>Sensor, external return (separate storage tank)</td>
</tr>
<tr>
<td>ST A</td>
<td>Branch control valve</td>
</tr>
<tr>
<td>TR/L/H</td>
<td>Return sensor (Dual hydraulic module)</td>
</tr>
<tr>
<td>T9</td>
<td>Motor valve</td>
</tr>
<tr>
<td>T80</td>
<td>Mixing valve</td>
</tr>
<tr>
<td>T81</td>
<td>Heat pump outdoor unit, split, scope of supply</td>
</tr>
<tr>
<td>T82</td>
<td>Hydraulic indoor unit, split, scope of supply</td>
</tr>
<tr>
<td>T83</td>
<td>Circulation pump</td>
</tr>
<tr>
<td>T84</td>
<td>Changeover valve</td>
</tr>
<tr>
<td>T113</td>
<td>Connection, additional heat generator</td>
</tr>
<tr>
<td>T1/B1</td>
<td>Outdoor sensor</td>
</tr>
<tr>
<td>T1/B2</td>
<td>Flow sensor</td>
</tr>
<tr>
<td>T1/B3</td>
<td>Return sensor</td>
</tr>
<tr>
<td>T1/B6</td>
<td>Domestic hot water sensor</td>
</tr>
<tr>
<td>T1/B7</td>
<td>Flow sensor, condenser</td>
</tr>
<tr>
<td>T1/B19</td>
<td>Sensor, electric heating cartridge</td>
</tr>
<tr>
<td>T1/B24</td>
<td>Sensor, additional heat generator</td>
</tr>
</tbody>
</table>

Please note that the table entries are placeholders and should be replaced with the actual component descriptions and configurations as provided in the original German manual.
Information on fuses can be found in the technical data.

Legend:
EVU = Equipment
A1-A3 = Terminals
OUT1-Out16 = Terminals in heat pump switchbox
SUB = Sub-distribution unit
XT1-XT12 = Terminals on controller board
ZUP = Cut out compressor
HUP = Cut out controller
BUP = Brine circulation pump
AN1 = Charge/discharge/cooling mixer 1 closed
AN2 = Charge/discharge/cooling mixer 1 open
AN3 = Auxiliary circulation pump
AN4 = Heating circuit circulating pump
AN5 = Diverting valve for domestic hot water
AN6 = Brine pressure pressostat; provided by cust. if necessary
AN7 = Energy supplier contact; closed on release; bridge if no blocking interval
AN8 = Energy supplier contact; closed on release; bridge if no blocking interval
AN9 = Control signal of additional heat generator 1
AN10 = Control signal of additional heat generator 2 (alternative is general malfunction)
AN11 = Circulation pump
AN12 = Pump for mixing circuit 1
AN13 = Charge/discharge/cooling mixer 1 open
AN14 = Sensor mixing circuit 1
AN15 = External return sensor
AN16 = External sensor
AN17 = Terminal strips on controller board
AN18 = Power supply compressor; right-hand rot. field is mandatory!
AN19 = Terminal in switch box heat pump
AN20 = Fuses
Legend:

3~PE/400V/50Hz

UK Function

L1, L2, L3, PE; power supply, output, compressor; clockwise rotary field is absolutely necessary!

Phase sequence relay: if phase sequence in the order of 11 + 14 is closed

Compressor

Contactor for compressor 1

Power supply compressor; right-hand rot. field is mandatory!

Compressor output / control connector

Equipment 3~PE/400V/50Hz

B1

M1

Q1

X100

Legend:

UK 817409a

A

B

C

D

E

F

817409a

1

2

3

4

5

6

1U

V

W

PE

11

12

14

L1 L2 L3 N PE
Circuit diagram 3/3

Legend:

- Equipement
- B10
- B11
- K22
- K40
- R1
- R3
- R4
- R6
- R7
- R8
- R10
- XJ
- HD
- ND
- TSG1
- TWE
- THG
- TVL
- TRL
- TWAC
- UK

Function:

- High-pressure sensor
- Low pressure sensor
- Electronic expansion valve
- Controller board; Attention: I_max = 6.3A/230VAC
- Suction sensor, condenser
- Heat source input sensor
- Hot gas sensor
- Flow sensor
- Return sensor
- Heat source output sensor
- Encoding resistor
- Sensor card connector

Legend:

- 817409a
- XJ1
- XJ8
- R10
- X10
- XJ2
- R1
- XJ4
- R3
- XJ5
- R4
- XJ7
- R8
- X9
- R6
- R7
- B10
- X11
- XJ15
- B11
- XJ16
- K22
Legend:
UK 4.1-71.0a
3-L1, L2, L3, PE, power supply, output, compressor; clockwise rotary field is absolutely necessary!
B1, M1, Q1, Q11, X8, X100
817410a
12345678

3~PE/400V/50Hz

- L1, L2, L3, PE; power supply, output, compressor; clockwise rotary field is absolutely necessary!
- Phase sequence relay; if phase sequence in the order of 11 + 14 is closed
- Compressor
- Contactor for compressor 1
- Power supply compressor; right-hand rot. field is mandatory!
- Compressor output / control connector
SW 102H3 – SW 122H3

Circuit diagram 2/3

Legend:
- Equipement
 1~N/PE/230V/50Hz
- F1
- K40
- M3
- Q1
- R20
- X10
- X100
- X200
- XJ
- EVU

- HDP
- BOSUP
- VD

UK: Function
- Power supply controller 230V
- High-pressure switch
- Controller board; Attention: I_max = 6.3A/230VAC
- Brine pump energy efficiency
- Contactor for compressor 1
- Resistor
- Terminal in switch box heat pump
- Compressor output / control connector
- Control connector
- Sensor card connector
- Energy supplier contact; closed on release; bridge if no blocking interval

- 817410a
- 4.64kOhm
- X1
- X2
- X100
- Q1
- X200
- XJ14
- X7
- XJ1
- X11
- X12

- M115
- PWM114
- M216
- PWM2
- AI3
- AO1

- IN1
- IN2
- OUT1

- white / yellow
- brown / green

Bearbeiter: R.
Datum: 24.09.2014
Pfleger: P.
Circuit diagram 3/3

SW 102H3 – SW 122H3

Legend:
- High-pressure sensor
- Low pressure sensor
- Electronic expansion valve
- Controller board; Attention: I-max = 6,3A/230VAC
- Suction sensor, condenser
- Heat source input sensor
- Hot gas sensor
- Flow sensor
- Return sensor Heat source output sensor
- Encoding resistor
- Sensor card connector

Equipment

- B10
- B11
- K22
- K40
- R1
- R3
- R4
- R6
- R7
- R8
- R10
- XJ
- HD
- ND
- TSG1
- TWE
- THG
- TVL
- TRL
- TWA
- CW

Function

- Blue
- Brown / blue
- White
- Green
- Yellow
- Pink
- Grey / pink
- Red / blue
- White / green
- Black
- Red
- Orange
- Yellow
- Grey / pink
- Red / blue
- White / green

Date:

- Änderung Datum
- Datum
- Bearbeiter
- Geprüft
- Norm Name

- 24.09.2014
- Pfleger
- R.
Circuit diagram 1/3

Legend:

Equipement 3~PE/400V/50Hz

- B1
- M1
- Q1
- Q11
- X8
- X100
- 3~
- M1
- Q1
- VD1

Function

L1, L2, L3, PE; power supply, output, compressor; clockwise rotary field is absolutely necessary!

Phase sequence relay; if phase sequence in the order of 11 + 14 is closed

Compressor

Contactor for compressor 1

Starting current limit

Power supply compressor; right-hand rot. field is mandatory!

Compressor output / control connector

UK 817411a
Circuit diagram 2/3

Legend:
- Equipement
- 1~N/PE/230V/50Hz
- F1
- K40
- M3
- Q1
- X10
- X100
- X200
- XJ
- EVU
- UK
- HDP
- VBO
- VD
- Function
- Power supply controller 230V
- High-pressure switch
- Controller board; Attention: I-max = 6,3A/230VAC
- Resistor
- Terminal in switch box heat pump
- Compressor output / control connector
- Control connector
- Sensor card connector
- Energy supplier contact; closed on release; bridge if no blocking interval

- 142H3 – 192H3
Legend:

- B10: High-pressure sensor
- B11: Low pressure sensor
- K22: Electronic expansion valve
- R1: Controller board; Attention: I-max = 6,3A/230VAC
- R3: Suction sensor, condenser
- R4: Heat source input sensor
- R6: Hot gas sensor
- R7: Flow sensor
- R8: Return sensor
- R10: Heat source output sensor
- R11: Encoding resistor
- XJ: Sensor card connector

Utilities:

- A11: PE
- A12: GND/LIN/12V
- A13: AI183
- A14: AI203
- A15: EEV
- A16: P.E
- B1: Red
- B2: Orange
- B3: Yellow
- B4: Green
- B5: White
- B6: Pink
- B7: Grey
- B8: Brown
- B9: Violet
- B10: Black

- A: 12 white / blue
- A: grey / pink
- A: red / blue
- B: white / green
- B: grey / brown

- PE:
 - 1: 12 white / blue
 - 2: grey / brown
 - 3: pink / brown
 - 4: violet
 - 5: Black
 - 6: Red
 - 7: Orange
 - 8: Yellow

- A: 12 white / blue
- A: grey / pink
- A: red / blue
- B: white / green
- B: grey / brown

- 12 white / blue
- grey / brown
- pink / brown
EC Declaration of Conformity

EC Declaration of Conformity in accordance with the EC Machinery Directive 2006/42/EC, Annex II A

The undersigned confirms that the following designated device(s) as designed and marketed by us fulfill the standardized EC directives, the EC safety standards and the product-specific EC standards. In the event of modification of the device(s) without our approval, this declaration shall become invalid.

Designation of the device(s)

Heat Pump

<table>
<thead>
<tr>
<th>Unit model</th>
<th>Number</th>
<th>Unit model</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW 42H3</td>
<td>10070041</td>
<td>SW 42H1</td>
<td>1007042</td>
</tr>
<tr>
<td>SW 62H3</td>
<td>10070141</td>
<td>SW 62H1</td>
<td>1007142</td>
</tr>
<tr>
<td>SW 82H3</td>
<td>10070241</td>
<td>SW 82H1</td>
<td>1007242</td>
</tr>
<tr>
<td>SW 102H3</td>
<td>10070342</td>
<td>SW 102H1</td>
<td>1007342</td>
</tr>
<tr>
<td>SW 122H3</td>
<td>10070442</td>
<td>SW 122H1</td>
<td>1007442</td>
</tr>
<tr>
<td>SW 142H3</td>
<td>10070542</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW 172H3</td>
<td>10070642</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW 192H3</td>
<td>10070742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW 232H3</td>
<td>10070842</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW 262H3</td>
<td>10070942</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW 302H3</td>
<td>10071042</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EC Directives

- 2006/42/EG
- 2006/95/EG
- 2004/108/EG
- 97/33/EG
- 2004/108/EG

Standardized EN

- EN 378
- EN 60529
- EN ISO 12100-1/2
- EN ISO 13857

Category

II

Module

A1

Designated position:

TÜV-SÜD
Industrie Service GmbH (Nr.:0036)

Company:

ait-deutschland GmbH
Industrie Str. 3
93359 Kasendorf
Germany

Place, date:

Kasendorf, 14.12.2015

Signature:

Jesper Stannow
Head of Heating Development

UK818173c